

LAERTE Combustion benches

Identification of the installation/facility :

Country: FRANCE Location (city):Palaiseau Name of the facility:LAERTE Date of construction or of acquisition or of main refurbishment: 1991 Owner: ONERA Contact point: <u>alain.cochet@onera.fr</u>; + 33 1 80 38 60 74 Internet site: www.onera.fr

Technical characteristics:

1 - Type of infrastructure	
Wind tunnel	
Propulsion bench	\boxtimes
Structures facility	
Material facility	
Simulator (ex. Flight simulator, tower,)	
Flight test bed (aircraft, embedded facilities,)	
Supercomputers	
Other	

2 - Main technical characteristics

Basic researches on turbulent combustion are led in LAERTE test facilities (LAboratoire des Ecoulements Réactifs et de leurs Techniques d'Etudes) where data bases are made up for the validation of the combustion models implemented in the CFD codes. Those data bases are obtained from experiments carried out in simplified basic combustor configurations.

There are two flow lines available. One dedicated to subsonic flows and one for supersonic flows.

The main characteristics of the subsonic flows are the followings:

Maximum Air mass flow: 0,3 kg/s

Maximum pressure: 0.3 Mpa

Minimum pressure: 0.1 Mpa

Maximum temperature : 550 K

Type of fuel : Kerosen and methane

3 - Research domains which can be addressed (refer to ACARE taxonomy http://www.acare4europe.com/docs/ASD-Annex-final-211004-out-asd.pdf) Propulsion/ Combustion

- Combustor operability
- Combustion technologies for reducing emissions produced by conventional engines configurations
- Enhance mixing design / technologies for lean combustion
- Multi-point fuel injection

4 - Main (or specific) associated measurement techniques

-Dedicated to the bench: pressure, temperature, mass flow rate, gas analysis

-Specific measurements: non intrusive optical measurement methods (LDV, PIV, PLIF, CARS)

5 - Operational status

- Fully operational (around 250h in 2010)

6 - picture

Financial elements:

Replacement cost (M€uros)

Less than 10	
10 to 30	\square
30 to 60	
60 to 100	
More than 100	

Practices concerning:

Access policy (contract, voucher, free access for research, etc...): Contract and free access

Support (regional, national, European, private, ...): regional, national, European, private (industries)

Origin of information ('signature'): author and date

alain.cochet@onera.fr; + 33 1 80 38 60 74