

Identification of the installation/facility:

Country: Italy

Location (city): Milano Name of the facility: GVPM

Date of construction or of acquisition or of main refurbishment: 2000

Owner: Politecnico di Milano Contact point: Giuseppe Gibertini

Internet site: www.windtunnel.polimi.it

Technical characteristics:

1 - Type of infrastructure	
Wind tunnel	\boxtimes
Propulsion bench	
Structures facility	
Material facility	
Simulator (ex. Flight simulator, tower,)	
Flight test bed (aircraft, embedded facilities,)	
Supercomputers	
Other	

2 - Main technical characteristics

Close circuit, atmospheric, continuous low speed wind tunnel. Two test sections: a low turbulence test chamber (aeronautical) and a larger test chamber suitable for wind engineering tests with atmospheric boundary layer simulation.

Mean features

Aeronautical test section:

- 4m x 3.84m: $0 \le V \le 55$ m/s

Configurable in closed wall or open jet configuration.

Wind engineering test section:

- 13.84m x 3.84m: $0 \le V \le 16$ m/s

Model support:

- Remotely controlled vertical pylon allowing for incidence and side-slip setting
- Rear sting mounting for very high angles of attach
- Rotor support with driving motor
- Several 6-components internal balances

Auxiliary systems:

- Compressed air supply
- 300 kW electrical power supply for model motorization
- Suction system for air intake tests
- Traversing systems for probe positioning
- Simultaneous sampling DAQ system

Typical tests

- Configuration studies, data base creation (for aircraft and helicopters)
- Helicopter rotor tests
- Air intake simulation for aircraft and helicopters
- Sport tests
- Bridges and building tests in atmospheric boundary layer
- 3 Research domains which can be addressed (refer to ACARE taxonomy http://www.acare4europe.com/sites/acare4europe.org/files/document/ASD-Annex-final-211004-out-asd.pdf)
- 1. Flight Physics
 - a. Unsteady Aerodynamics
 - b. Airflow control
 - c. High Lift Device
 - d. Wing Design
- 2. Aerostructures
 - a. Smart Material and Structures
- 10. Innovative Concepts and Scenarios
 - a. Unconventional configurations and innovative aircraft
- 4 Main (or specific) associated measurement techniques

Load measurement (strain gauge balances)
Pressure measurements (steady and unsteady)
3C Particle Image Velocimetry
Hot wire anemometry

- 5 Operational status
- Fully operational 1200 hours available per year

6 - Picture:

Financial elements:

Replacement cost (M€uros)	
Less than 10	
10 to 30	\boxtimes
30 to 60	
60 to 100	
More than 100	

Practices concerning:

Access policy: contract, voucher, free access for research, etc...) Contract

Support (regional, national, European, private, ...) national

Comments:

Origin of information ('signature'): author and date

Prof. Franco Bernelli Department Head

Dept. of Aerospace Science and Technology

Politecnico di Milano

June 2, 2014