



### Identification of the installation/facility:

Country: the Netherlands Location (city): Marknesse Name of the facility: DNW-LLF Date of construction or of acquisition or of main refurbishment: 1980 Owner: DNW Contact point: H.B.Vos Internet site: www.dnw.aero

AirTN

Air Transport Net

### Technical characteristics:

| 1 - Type of infrastructure                       |   |
|--------------------------------------------------|---|
| Wind tunnel                                      | Χ |
| Propulsion bench                                 |   |
| Structures facility                              |   |
| Material facility                                |   |
| Simulator (ex. Flight simulator, tower,)         |   |
| Flight test bed (aircraft, embedded facilities,) |   |
| Supercomputers                                   |   |
| Other                                            |   |

### 2 - Main technical characteristics

Closed circuit, atmospheric, continuous low-speed wind tunnel with one closed wall and one configurable (slotted) wall test section and an open jet.

#### Main features

#### **Closed wall test sections**

Fixed section

- 9.5 m x 9.5 m: 0 <u><</u> V <u><</u> 62 m/s

Configurable section with the following two configurations

- 8 m x 6 m: 0 <u><</u> V <u><</u> 116 m/s
- 6 m x 6 m: 0 <u><</u> V <u><</u> 152 m/s

#### Open jet

- 8 m x 6 m: 0 < V < 80 m/s

#### Model support

- Remotely controlled sting support system with four degrees of freedom for models with internal balance
- External six-component balance





- Floor-based model support system for open jet testing with three degrees of freedom

### Auxiliary systems

- Compressed air supply with a capacity of 5 kg/s continuously at 80 bar
- Vacuum system
- Moving belt ground plane for ground simulation
- Microphone traversing system
- Microphone wall arrays

## Typical tests

- Configuration studies, database creation (civil and military transport aircraft, fighters, helicopters, spacecraft, cars and trucks)
- Engine integration studies with air-powered simulators - turbofan-powered aircraft by means of TPS
  - propeller-driven aircraft
- Air exhaust simulation with compressed air
- Air intake surveys for fighters and helicopters
- Aeroacoustic and performance testing on rotorcraft models
- Aeroacoustic testing on full-scale aircraft components (landing gears, wings)
- Aeroacoustic investigations on scaled turbofans
- Full-scale cars and trucks (drag and aeroacoustics)

### 3 - Research domains which can be addressed (refer to ACARE taxonomy http://www.acare4europe.com/docs/ASD-Annex-final-211004-out-asd.pdf)

- 1. Flight Physics
  - a. Aeronautical Propulsion Integration
  - b. Airflow Control
  - c. High Lift Devices
  - d. External Noise Prediction
- 2. Aerostructures
  - a. Helicopter Acoustics
  - b. Noise reduction
  - c. Acoustic Measurements and Test Technology
- 3. Propulsion
  - a. Performance (Nacelle/Thrust reverser/nozzle design)
- 10. Innovative Concepts and Scenarios
  - a. Unconventional configurations and new aircraft concepts

### 4 - Main (or specific) associated measurement techniques

Load measurement (strain gauge balances) Pressure measurements (static and dynamic)





Particle Image Velocimetry (PIV) Stereo Pattern Recognition (SPR) Acoustics (microphone arrays)

# 5 - Operational status

- Fully operational 1200 hrs available per year

AirTN

Air Transport Net

# 6 - Picture:



# Financial elements:

| Replacement cost (M€uros) |   |
|---------------------------|---|
| Less than 10              |   |
| 10 to 30                  |   |
| 30 to 60                  |   |
| 60 to 100                 |   |
| More than 100             | X |





# Practices concerning:

Access policy : contract

Support : national

### Comments:

For propulsion integration, the engine simulator calibration facility is available on site.

AirTN

Air Transport Net

Origin of information ('signature'): author and date

Georg Eitelberg, Director DNW, 7 December 2011