

Identification of the installation/facility:

Country: Germany Location (city): Goettingen Name of the facility: <u>Next G</u>eneration <u>Turb</u>ine Test Facility (NG-Turb) Date of construction or of acquisition or of main refurbishment: 2008 - 2014 Owner: DLR Institute of Propulsion Technology Contact point: Turbine Department, Frank Kocian (<u>Frank.Kocian@dlr.de</u>) Internet site: <u>http://www.dlr.de/at</u>

AirTN

Air Transport Net

Technical characteristics:

1 - Type of infrastructure	
Wind tunnel	
Propulsion bench	$\overline{\langle}$
Structures facility	
Material facility	
Simulator (ex. Flight simulator, tower,)	
Flight test bed (aircraft, embedded facilities,)	
Supercomputers	
Other	

2 - Main Lechnical characteristic	.5	
Continuous running turbine facility	(closed circuit	t)
Transonic flow (flow medium air)		
Reynolds number	≤ 1,000,000	
Total inlet pressure	≈ 10 ÷ 200	kPa
Total inlet temperature	≈ 300 ÷ 520	Κ
Maximum turbine pressure ratio	≈ 10 ÷ 12	
Maximum turbine casing radius	450	mm

First stage of extension (one shaft c	onfiguration)	
Number of turbine stages	≤ 2½	
Turbine shaft power	≤ 1	MW
Turbine speed	≤ ±13,000	rpm

Future expansion (two shaft configuration):		
Number of turbine stages (HPT shaft) <	2	
Number of turbine stages (IPT/LPT shaft) 12	1/2	
Turbine shaft power (HPT shaft) \leq	3	MW
Turbine shaft power (IPT/LPT shaft) \leq	1	MW
Turbine speed (HPT shaft) $\leq \pm 15,00$)0	rpm
Turbine speed (IPT/LPT shaft) $\leq \pm 13,00$	00	rpm

3 - Research domains which can be addressed (refer to ACARE taxonomy http://www.acare4europe.com/sites/acare4europe.org/files/document/ASD-Annex-final-211004-out-asd.pdf)

• Increased turbine efficiency

- More efficient cooling technologies
- Combustor-turbine interaction (application of a combustor simulator)

Air Transport Net

- HPT-IPT/LPT interaction with short intermediate duct
- Fast rotating LPT's (applied in geared turbofan engines)

AirTN

- Contra-rotating turbines (applied in counter rotating turbofan engines)
- Validation of computational methods
- Aerodynamic optimization
- 4 Main (or specific) associated measurement techniques
 - Standard techniques (pneumatic probes, steady and unsteady pressures, thermocouples, etc.)
 - Laser measurement techniques (Laser-2-Focus Velocimetry, Particle Image Velocimetry, Doppler Global Velocimetry, Transient Grating Spectroscopy, Filtered Rayleigh Scattering, Light sheet techniques for detection of coolant concentration, etc.)
 - Steady and unsteady surface pressures with Pressure Sensitive Paint (PSP)
 - Heat transfer and cooling effectiveness with infrared image cameras or Temperature Sensitive Paint (TSP)
 - Accustic measurement techniques (microphone arrays)
- 5 Operational status
 - Fully operational with one shaft (first research turbine installed) in April 2015

6 - Photo of the NG-Turb test rig (test-section)

AirTN Air Transport Net

Financial elements:

Less than 10	
10 to 30	\boxtimes
30 to 60	
60 to 100	
More than 100	

Replacement cost (M€uros)

Practices concerning:

Turbine research and development with industrial partners, preferably in a long-term collaboration (via contract).

Comments:

./.

Origin of information ('signature'): author and date

Hans-Jürgen Rehder, 26 August 2014